New features of otgui 2018

Aurélie Ladier ¹ Julien Schueller ¹

¹Phimeca Engineering. 18/20 boulevard de Reuilly, 75012 Paris - France,
schueller@phimeca.com

OpenTURNS users day #11, Saclay, France
Contents

otgui overview

FMI models

Advanced visualization

Dependency treatment

Future work

Bibliography
otgui overview

otgui summary

- Generic "OpenTURNS" gui
- Aims at exposing uncertainty methods to non-experts
- Partnership EDF-Phimeca
- Distributed since 2016 at EDF through Salome
otgui methods

- Data analysis (moments, visualisation, inference)
- Probabilistic modeling (continuous marginals, copulas)
- Meta modeling (chaos, kriging), Optimization
- Sensitivity analysis (Sobol’, SRC, Morris)
- Reliability (Taylor, Monte Carlo, FORM, SORM, FORM-IS)
study example 1/13: math model

The flood model of a river compares the water level to the dike height:

$$S = \left(\frac{Q}{K_s \times 300 \times \sqrt{(Z_m - Z_v)/5000}} \right)^{3/5} + Z_v - 55.5 - 3$$
study example 2/13: physical model definition
study example 3/13: study diagram
study example 4/13: math model

Probabilistic model:

- $Q \sim \text{Gumbel}(\alpha=0.00179, \beta=1013)$, flow rate [$m^3s^{-1}$]
- $Ks \sim \text{Normal}(\mu=30.0, \sigma=7.5)$, strickler [$m^{1/3}s^{-1}$]
- $Zv \sim \text{Uniform}(a=49, b=51)$, downstream depth [m]
- $Zm \sim \text{Uniform}(a=54, b=56)$, upstream depth [m]
study definition 5/13: probabilistic model definition
study example 6/13: study diagram
Failure occurs when S is positive, let's estimate $P_f = \mathbb{P}(S(X) > 0)$.
study example 8/13: study diagram
study example 9/13: simulation wizard
study example 10/13: simulation wizard
study example 11/13: simulation wizard
study example 12/13: simulation result window
study example 13/13: simulation result window
FMI models

Different types of models already available:

- Symbolic
- Python
- YACS (Salome execution engine)
FMI models

New model type:

- Evaluate system models in the FMI standard
- Open FMU binaries from Modelica simulation IDEs (OpenModelica, Dymola, ...)

![FMI models diagram]
FMI models

Inspect model properties (tools, author, version, ...)

```
<table>
<thead>
<tr>
<th>Identifier</th>
<th>deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMI version</td>
<td>2.0</td>
</tr>
<tr>
<td>Tool</td>
<td>OpenModelica Compiler OpenModelica 1.12.0-dev.alpha1</td>
</tr>
<tr>
<td>Platform</td>
<td>default</td>
</tr>
<tr>
<td>Author</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td></td>
</tr>
<tr>
<td>Copyright</td>
<td></td>
</tr>
<tr>
<td>Date/Time</td>
<td>2017-06-01T15:44:46Z</td>
</tr>
<tr>
<td>GUID</td>
<td>2f2b8797-1cbf-4b5a-b2c7-57810979f240</td>
</tr>
</tbody>
</table>
```

Number of variables: 5

Causality: parameter:0, input:4, output:1, local:0
FMI models

Inspect model variables (type, causality, ...), select inputs/outputs
Advanced visualization

- Using Paraview graphics library
- Interactive widgets
- Model/view paradigm: several views on the same data
- Help visualize DOEs (Monte Carlo simulation, outliers, ...)

EDF-Phimeca (Phimeca) otgui 2018
Advanced visualization

Cobweb plots
Scatter plots
Matrix plot
Table

<table>
<thead>
<tr>
<th>Row ID</th>
<th>Ks</th>
<th>Q</th>
<th>S</th>
<th>Zm</th>
<th>Zv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1804</td>
<td>35.5273</td>
<td>1073.6</td>
<td>-6.17885</td>
<td>54.0207</td>
<td>50.1562</td>
</tr>
<tr>
<td>1805</td>
<td>29.4658</td>
<td>2340.62</td>
<td>-4.27899</td>
<td>55.8278</td>
<td>50.6745</td>
</tr>
<tr>
<td>1806</td>
<td>41.0070</td>
<td>1958.61</td>
<td>-5.34003</td>
<td>54.4901</td>
<td>50.3794</td>
</tr>
<tr>
<td>1807</td>
<td>32.7166</td>
<td>1374.94</td>
<td>-5.88981</td>
<td>54.718</td>
<td>50.1076</td>
</tr>
<tr>
<td>1808</td>
<td>17.5810</td>
<td>2411.49</td>
<td>-3.96509</td>
<td>55.5186</td>
<td>50.4798</td>
</tr>
<tr>
<td>1809</td>
<td>23.6902</td>
<td>1393.21</td>
<td>-4.77093</td>
<td>55.6882</td>
<td>50.7298</td>
</tr>
<tr>
<td>1810</td>
<td>31.9600</td>
<td>2328.09</td>
<td>-5.59052</td>
<td>54.065</td>
<td>49.4214</td>
</tr>
<tr>
<td>1811</td>
<td>20.8787</td>
<td>1523.96</td>
<td>-4.34273</td>
<td>55.8122</td>
<td>50.7652</td>
</tr>
<tr>
<td>1812</td>
<td>31.0865</td>
<td>1166.96</td>
<td>-5.28911</td>
<td>55.4425</td>
<td>50.893</td>
</tr>
<tr>
<td>1813</td>
<td>39.1037</td>
<td>1987.84</td>
<td>-6.37966</td>
<td>54.8386</td>
<td>49.4441</td>
</tr>
<tr>
<td>1814</td>
<td>34.1604</td>
<td>1392.97</td>
<td>-6.08958</td>
<td>55.2322</td>
<td>50.0389</td>
</tr>
<tr>
<td>1815</td>
<td>29.5445</td>
<td>4681.62</td>
<td>-3.02946</td>
<td>55.0819</td>
<td>50.0612</td>
</tr>
<tr>
<td>1816</td>
<td>13.7480</td>
<td>2428.27</td>
<td>-3.15087</td>
<td>55.6477</td>
<td>49.8252</td>
</tr>
<tr>
<td>1817</td>
<td>21.9185</td>
<td>1359.47</td>
<td>-6.1438</td>
<td>55.1643</td>
<td>49.392</td>
</tr>
<tr>
<td>1818</td>
<td>29.1782</td>
<td>872.762</td>
<td>-5.50073</td>
<td>54.2284</td>
<td>50.7779</td>
</tr>
<tr>
<td>1819</td>
<td>20.1298</td>
<td>1040.46</td>
<td>-5.5821</td>
<td>54.3833</td>
<td>49.6999</td>
</tr>
<tr>
<td>1820</td>
<td>37.5300</td>
<td>1356.94</td>
<td>-7.34952</td>
<td>55.156</td>
<td>49.0488</td>
</tr>
<tr>
<td>1821</td>
<td>26.942</td>
<td>784.677</td>
<td>-6.41858</td>
<td>55.1274</td>
<td>50.1219</td>
</tr>
</tbody>
</table>
Dependency treatment

- Only Normal copula was available (Spearman)
- Now all parametric copulas available
- Copula inference
Dependency treatment

Copula inference 1/5: data import
Copula inference 2/5: study diagram
Dependency treatment

Copula inference 3/5: dependency blocs

Firstly, define groups of variables. Then for each group, list copulas to infer from the sample.

- Variables
 - x1
 - x2
 - x3
 - x4

- Groups
 - [x1, x4]
 - [x2, x3]

- Copulas
 - Normal

Finish
Cancel
Copula inference 4/5: Kendall plot
Copula inference 5/5: pdf
Dependency treatment

Probabilistic model copulas
Future work

- Vector-Field models (first 1-d meshes)
- Parallel evaluation (Python)
- Remote computations (YACS engine)
Thank you for your attention!
Any questions?
Bibliography

- Airbus, EDF, Phimeca Engineering, IMACS. OpenTURNS, a scientific library usable as a Python module dedicated to the treatment of uncertainties, www.openturns.org.